
 DFL Software
Light Lib Images 1.0

Languages CA-Visual Objects
MS-Visual Basic
C/C++

DLL Support DLL Functions
Callback Functions
Constants

General Introduction
Quick Start
How to use this Help
Overview
Compatibility

Appendices BLOB's
Common Problems/Questions
Tips & Techniques
Editions
License
Technical Support
Light Lib Products
About DFL...

DLL Functions

We strongly suggest that you use the extensive support classes and functions provided for the
individual languages instead of calling the DLLs directly. The following DLL functions are
provided for reference and should not be called directly unless you have a thorough
understanding of how to use them.

Light Lib Images
iCopy()
iGet()
iGet() Memory
iGet() Screen
iGet() Disk
iGet() Scanner
iPut()
iPut() Memory
iPut() Printer
iPut() Screen
iPut() Disk

LightLib Objects
oAccess()
oAssign()
oNew()
oDel()

Constants

General
Devices
Disk
Memory
Scanner
Screen
User Defined
Callback Functions
Image Information

System
Light Lib Objects Constants

Device Constants

LLI_DISK
LLI_MEMORY
LLI_SCANNER
LLI_SCREEN

System Constants

LLI_CLASS_APPLICATION
LLI_CLASS_IMAGE

LLI_APPLICATION_VERSION Get Light Lib Images version
LLI_APPLICATION_IDLE Get/Set Udf idle function
LLI_APPLICATION_IDLE_REPEAT Get repeat count of Udf

General Constants

LLI_FULL_SIZE Maximun size for any image
LLI_IMG_IS_IMAGE Image signature
LLI_PALETTE_SHARED Use a shared palette
LLI_PALETTE_EXCLUSIVE Use an exclusive color palette
LLI_VOID_PARAM Void parameter

Disk Constants

Device
LLI_DISK

File Types
LLI_DISK_AUTO File Type determined from extension
LLI_DISK_BMP BMP file format
LLI_DISK_GIF GIF file format
LLI_DISK_JPG JPG file format
LLI_DISK_PCX PCX file format
LLI_DISK_TIF TIF file format

Disk Compression Types
LLI_DISK_COMPRESS_AUTO Use the best compression automatically
LLI_DISK_COMPRESS_CCITT1D Modified Huffman for TIF
LLI_DISK_COMPRESS_CCITTG3 CCITT Group 3 for TIF
LLI_DISK_COMPRESS_CCITTG4 CCITT Group 4 for TIF
LLI_DISK_COMPRESS_LZW Lempel for TIF and GIF
LLI_DISK_COMPRESS_RLE Run Length Encoding TIF/PCX

Memory Constants

Device
LLI_MEMORY

Colors
LLI_MEMORY_16 4 bits / pixel
LLI_MEMORY_256 8 bits / pixel
LLI_MEMORY_16M 24 bits / pixel
LLI_MEMORY_BW 1 bit / pixel

Scanner Constants

Device
LLI_SCANNER

LLI_SCANNER_TWAIN TWAIN
LLI_SCANNER_TWAIN_DIALOG TWAIN Dialog

Screen Constants

Device
LLI_SCREEN

Type
LLI_SCREEN_DEVICE_CONTEXT Screen using a device context
LLI_SCREEN_WINDOW_HANDLE Screen using aWindow handle

Transforming
LLI_COPY_CLONE iCopy() Clone message
LLI_COPY_TURN iCopy() Turn message
LLI_COPY_ZOOM iCopy() Zoom message

Turn formats
LLI_TURN_180 iCopy(LLI_COPY_TURN) 180°
LLI_TURN_270 iCopy(LLI_COPY_TURN) 270°
LLI_TURN_90 iCopy(LLI_COPY_TURN) 90°

Zoom Constants
LLI_ZOOM_FIT_HEIGHT All the image height must fit in the window
LLI_ZOOM_FIT_NONE The zoom factor is driven buy the scale factors
LLI_ZOOM_FIT_REFRESH Refresh the fit request on a window resize
LLI_ZOOM_FIT_WIDTH All the image width must fit in the window

Fit Constants (CA-Visual Objects)
LLI_FIT_HEIGHT Fit the image height in the window
LLI_FIT_NONE Zoom factor is determined by the scale factors
LLI_FIT_REFRESH Refresh the requested Fit mode on a window

resize
LLI_FIT_WIDTH Fit theimage width in the window
LLI_FIT_WINDOW Fit the entire image in the window

User Defined Constants

LLI_UDF_ABORT Udf Abort return value
LLI_UDF_CONT Udf Continue return value
LLI_UDF_ERROR Error append during a LLI function execution
LLI_UDF_EXIT Exit phase for a LLI function execution
LLI_UDF_IDLE Idle phase for a LLI function execution
LLI_UDF_INIT Init phase for a LLI function execution

Callback Constants

LLI function names passed to the callback function

LLI_CALLER_COPY
LLI_CALLER_GET
LLI_CALLER_PUT

Image Information Constants

LLI_IMAGE_BITS Read Only
LLI_IMAGE_CARGO Assignable
LLI_IMAGE_COLORS Read Only
LLI_IMAGE_DPI Read Only
LLI_IMAGE_HEIGHT Read Only
LLI_IMAGE_WIDTH Read Only

Introduction

Welcome to Light Lib Images !

Light Lib Images was designed to be the easiest image management library available for Windows
application developers. Light Lib Images enables you to easily implement document and image support
for existing or new applications. Light Lib Images is highly optimized for very fast image processing. The
product provides full support for .BMP, .PCX, .TIF, .GIF, .JPG file formats and uses state-of-the-art
compression RLE, HUFFMAN, LZW(ZIP), CCITT Group 3 & 4 (fax) and JPEG.

Light Lib Images' amazing speed is based on excellent internal image processing. All images are divided
into smaller images or "strips" before beingprocessed. This gives Light Lib Images the ability to display
very large images efficiently. Other imaging libraries do not do this. They rely on Windows to provide the
necessary memory management in the hope that an image will fit neatly into availablememory.

Light Lib Images was developed with the following goals in mind:

Ease of Use It is very easy to integrate Light Lib Images into existing applications.

There exists lessthan a dozen core functions which provide the power
needed to manage images.

Execution speed Execution speed is excellent. Our internal processing algorithms have

been optimized to let you efficiently manage very large images.

Language Support Providing DLLs is not enogh. All Light Lib products for Windows come
with extensive language support which make it effortless to introduce
Light Lib libraries using established and familiar syntax. Light Lib
products are the best solution if you need to develop applications
with various Windows languages. There is no need to learn
different libraries because Light Lib products provide support for
the following WIndows application development languages,

Borland C++
Microsoft C/C++
Microsoft Visual Basic
CA-Visual Objects

Light Lib Images is comprised of a small set of core functions which provide all of the
necessary services Above the core is the language support layer which provides simple
interface to the core functions in the desired language. Language support is provided MS-
Visual Basc, CA_Viaual Objects, and C/C++ Windows Development Systems..

All trademarks are the property of their registered owners.

Available devices are Screen, Printer, Scanner, Disk and Memory.

No help available for this section.

Using Light Lib Images

The easiest way to learn any new concept is by example. Each installed language has the source code to
its own set of demonstration programs. Please reference them to gain a good understanding of how to
use Light Lib Images.

If you are familiar with object-oriented programming, you will find it useful to implement OOP concepts.

How to use this Help

This help system was designed to provide quick access to information. Help is provided for the extensive
language support and for the supplied Light Lib Images and Light Lib Objects DLLs.

We strongly suggest that you use the individual language support with your applications!

When a language is selected, you will be prompted with an overview of all support classes and/or
functions. There is also a "How Do I?" section which provides step-by-step instructions on various
common tasks.

A secondary window will open containing details and descriptions when any of these items are selected.
This window is set to always stay on top. That way once a help topic is selected, you can continue
working without losing focus on this window. To close it, simply select the window's system menu and
select Close.

Quick Start

See the sample application provided for each supported language. You should execute thesample
application and experiment with the image features in order to gain a good understanding of how Light Lib
Images works. Once you understand how to load and save an image, you will be able to easily modify the
samples to fit your needs.

See also How Do I?

Overview

Light Lib Images is a powerful yet easy to implement image management library. It is comprised of a few
core DLL functions. Each of these functions take several parameters which provide important
programming flexibility. For example, iPut() is used to dothree of the following different things depending
on the device parameter passed.

Action Device Constant
Display an image on Screen LLI_SCREEN
Send an image to a Printer LLI_PRINTER
Save an image on DiskLLI_TWAIN

Light Lib uses a set of pre-defined device constant which allow the use of the same Light Lib functions for
multiple target devices. For example, changing the value of the iPut() device constant parameter allows
the image to be sent to the screen, sent to a printer, or saved to disk. Other device constants are used to
specify image and file formats, compression techniqes, processing techniqes, scaling and so on. For
example, when saving an image to disk, you will need to provide the file name and file type in addition to
the disk device constant.

If your operation does not require the use of a particular parameter, simply substitute the unused
parameter with the predefined value LLI_VOID_PARAM.

Readme

Compatibility

Windows Screen Drivers

Light Lib Images is compatible with all installed Windows screen drivers.

Windows Printer Drivers

Light Lib Images is compatible with all installed Windows printer drivers.

TWAIN Scanner

Light Lib Images is fully TWAIN compliant

Callback Functions

Light Lib images uses "Callback" functions toprovide your applications with the ability to do something
while an image is being prcocessed. For example, displaying a gauge while an image is being scanned.
This allows you to keep users updated during various image manipulation. See also Callback Constants

Referencing an object from a Callback Function

In general, images are attached to objects (for example a window), but when Light Lib Images executes a
callback function which is not a method, the reference to "self" is lost. In this case, we suggest that "self"
be passed to one of the user defined parameters. This gives your callback function a reference to "self"
which provides access to all themethods and instance variables. This is very useful object oriented
programming. So, if your callback function needs to display a message inside the window which owns the
image, you can !

BLOBs

Light Lib Images supports BLOB (Binary Large OBjects) data formats in that you are able to convertan
image into a BLOB and vice versa. This allows you to store images to files which support BLOBs.

BLOB's are supported internally at this time. In the near future, the API will be published.

You can convert image data to a BLOB using iImg2Blob(ptrImg) and store thisBLOB in a database's
BLOB field. Here is a simple example:

Function BlobSample(cFile)

Local ptrImg // Pointer to an image structure containing the image

// Load .TIF file image from disk
ptrImg = iGet(LLI_DISK,

LLI_DISK_TIF,
0,
0,
LLI_FULL_SIZE ,
LLI_FULL_SIZE ,
"MyImage.TIF", // Image File Name
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM)

// Open a DBF file containing a BLOB type field
use IMAGE.DBF

// Add a new record to the DBFfile
append blank

// Convert the pointer the structure containing the
// image, into a BLOB and save the converted data
// to field called BLOBDATA
IMAGE->BLOBDATA =iImg2Blob(ptrImg)

// Load the image from a record in a database and display it.
ptrImg = iBlob2Img(IMAGE->BLOBDATA)

iPut(ptrImg,
0,
0,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_SCREEN,
LLI_WINDOW,
0,
0,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM)

// Erase the image from memory
prtImg = iErase(ptrImg)

return(NIL)

What's New...

Appendices

Dithering Techniques
Stripping Algorithm

CA-Visual Objects Functions and Classes

The CA-Visual Objects support AEF supplied with Light Lib Images should not be modified directly since
this support layer calls the Light Lib Objects DLL directly. Functions which should never be modified are
explicitly labeled in the AEF itself.

How Do I?

Classes
ImageInWindow
ImageWindow
ImageWindowControl

Functions
dwLightLibApp()
dwLightLibAppRegister()
dwLightLibAppUnRegister()
ImageIdle()
lImageOperationComplex()

Samples
Simple Image In Window

How Do I? CA-Visual Objects

General
Add an image to a data window
Display an image in an MDI
Scan a document
Optimize image quality

System
Register and unregister an application

How Do I? CA-Visual Objects

Display an image in an MDI

1. Create a ShellWindow
2. Register the application with the DLL
3. Show the ShellWindow
4. Create an ImageWindow object
5. Show the window
6. Add the oImageWindow object to the ShellWindow's array of ChildWindows
7. At the end of execution, unregister the application from the DLL

METHOD Start() CLASS App

LOCAL oWindow AS StandardShellWindow
LOCAL oImageWindow AS ImageWindow
LOCAL sFile := "YOUR.PCX"
LOCAL lScanImage := FALSE

// Create a ShellWindow
oWindow := StandardShellWindow{ self }

// Register this application with the DLL
dwLightLibAppRegister(self, oWindow)

// Show the ShellWindow
oWindow:Show()

// Create the ImageWindow object
oImageWindow := ImageWindow{ oWindow, sFile, lScanImage }

// Show the image window
oImageWindow:Show()

// Add the oImageWindow object to the MDI's array of ChildWindows
aadd(oWindow:aChildWindows, oImageWindow)

// At the end of execution, unregister the application from the DLL
dwLightLibAppUnRegister()

RETURN NIL

How Do I? CA-Visual Objects

Scan a document

1. Create a ShellWindow
2. Register the application with the DLL
3. Show the ShellWindow
4. Create an ImageWindow object
5. Show the window
6. Add the oImageWindow object to the ShellWindow's array of ChildWindows
7. At the end of execution, unregister the application from the DLL

METHOD Start() CLASS App

LOCAL oWindow AS StandardShellWindow
LOCAL oImageWindow AS ImageWindow
LOCAL sFile := "YOUR.PCX"
LOCAL lScanImage := FALSE

// Create a ShellWindow
oWindow := StandardShellWindow{ self }

// Register this application with the DLL
dwLightLibAppRegister(self, oWindow)

// Show the ShellWindow
oWindow:Show()

// Create the ImageWindow object
oImageWindow := ImageWindow{ oWindow, sFile, lScanImage }

// Show the image window
oImageWindow:Show()

// Add the oImageWindow object to the MDI's array of ChildWindows
aadd(oWindow:aChildWindows, oImageWindow)

// At the end of execution, unregister the application from the DLL
dwLightLibAppUnRegister()

RETURN NIL

How Do I? CA-Visual Objects

Add an image to a data window

Please note that for this explanation, you will need to have a DBServer created.

1. Optionally, create a new module or edit an existing one
2. Select the Window Editor to create a new window
3. Select LightLibDataWindow as the the window type
4. Provide a name for this new window (eg. Test)
5. Select AutoLayout from the Menu
6. Select a DBServer(See note above)
7. Select LightLibImage Control from the Toolbar and drag the control onto the data window or from the

Menu, select Edit, then Palette and then ImageWindowControl.
8. Drag this new image control onto the data window

Clicking on this new image control will allow you to edit the properties. Light Lib Images will generate all
the needed source code to take full advantage of the image.

How Do I? CA-Visual Objects

Optimize processing speed

How Do I? CA-Visual Objects

Optimize image quality

To obtain the best image quality, use 24 bit image formats. Currently, the only 24 bit file format supported
is .JPG

To display multiple 256 images on the screen, (8 bit or 24bit) your hardware will need to support more
than 32k colors, (ie 32K , 65K or 16M). Not that the difference between a 65K and 16M color image is
almost indistinguishable to the naked eye and that any setting greater than 256 colors is referred to as
"true color".

Color palettes are not used when the video setting is 65K colors and multiple images, regardless of their
definition, are able to be displayed very clearly. Keep in mind that using 24 bit images require fast
processing machines.

ImageInWindow Class

Purpose

Images which will be implemented inside a window.

Properties
GaugeVisible Access/Assign
Bits Access
Colors Access
Density Access
DisHeight Access
DisWidth Access
Dpi Access
OriHeight Access
OriWidth Access
PaletteShared Access/Assign

Methods
Clear()
ColorOperations()
Crop()
Display()
Fit()
FitInWindow()
FitRelease()
FitRescale()
FitToHeight()
FitToWidth()
Grab()
IdleOff()
IdleOn()
Information()
Init()
IsLoaded()
Load()
MemoryImage()
MemoryImage16()
MemoryImage16M()
MemoryImage256()
MemoryImageBW()
Print()
Rotate()
SaveAs()
Scan()
SwapSharedExclusive()
Zoom()

System Properties
These properties are used internally. The are provided as reference only and should NEVER be accessed
directly in your applications.
fScaleX Export
fScaleY Export
lPaletteShared Export

oWindowOwner Export

Inherits From

(No ancestors)

Inherited By

(No descendants)

ImageInWindow:fScaleX Export

Description

The X scale factor to use when zooming an image. Do not assign directly.

Type

FLOAT

ImageInWindow:fScaleY Export

Description

The Y scale factor to use when zooming an image. Do not assign directly.

Type

FLOAT

ImageInWindow:lPaletteShared Export

Description

If the color palette is being used in Shared mode. Do not assign directly.Use
ImageInWindow:PaletteShared instead.

Type

LOGICAL

ImageInWindow:oWindowOwner Export

Description

The image's owner Window. Do not assign directly.

Type

OBJECT

ImageInWindow:GaugeVisible Access/Assign

Description

If the image gauge is being used.

Type

LOGICAL

ImageInWindow:PaletteShared Access/Assign

Description

If the color palette is being used in Shared mode.

Type

LOGICAL

ImageInWindow:Bits Access/Assign

Description

The number of bits in an image. siBits contains the number of bits per pixel. The following are the
possible values:

2 for B&W
4 for 16 colors
8 for 256 colors
24 for 16M colors

Type

SHORTINT

ImageInWindow:Colors Access/Assign

Description

The number of colors in an image.

Type

SHORTINT

ImageInWindow:Density Access/Assign

Description

The density of an image.

Type

SHORTINT

ImageInWindow:DisHeight Access/Assign

Description

The displayable height of an image.

Type

SHORTINT

ImageInWindow:DisWidth Access/Assign

Description

The displayable width of an image.

Type

SHORTINT

ImageInWindow:Dpi Access/Assign

Description

The dots per inch (DPI) of an image. The following are the possible values are 150 and 300.

Type

SHORTINT

ImageInWindow:OriHeight Access/Assign

Description

The original height of an image.

Type

SHORTINT

ImageInWindow:OriWidth Access/Assign

Description

The original width of an image.

Type

SHORTINT

ImageInWindow:Clear() Method

Purpose

Prepare the window area for the image to be painted by clearing all variables and removing images from
memory.

Syntax

<oImageInWindow>:Clear() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:ColorOperations() Method

Purpose

Provide a dialog which allows for performing various operations on an image (eg. dithering, quantising,
grayscaling etc.)

Syntax

<oImageInWindow>:ColorOperations() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:Crop() Method

Purpose

Crop an image.

Syntax

<oImageInWindow>:Crop(<oStart>, <oEnd>) ---> NIL

Arguments

<oStart> The start point of the cropping rectangle.

<oEnd> The end point of the cropping rectangle.

Returns

NIL

Description

Allows cropping to be performed on an image.

ImageInWindow:Display() Method

Purpose

Display an image.

Syntax

<oImageInWindow>:Display(<hDC>) ---> NIL

Arguments

<hDC> Handle to the Device Context

Returns

NIL

ImageInWindow:Fit() Method

Purpose

Adjust the way an image is displayed in a window.

Syntax

<oImageInWindow>:Fit(<siFitMode>) ---> NIL

Arguments

<siFitMode> The Fit method to use in adjusting the image. See Screen Constants for the
available modes.

Returns

NIL

Description

This will properly fit an image to the coordinates of its bounding window.

ImageInWindow:FitInWindow() Method

Purpose

Fits an image or document completely in a window.

Syntax

<oImageInWindow>:FitInWindow() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:FitRelease() Method

Purpose

Releases an image that was previously fit in a Window using <oImageInWindow>:Fit()

Syntax

<oImageInWindow>:FitRelease() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:FitReScale() Method

Purpose

Re-applies aFit attribute after a window has been resized.

Syntax

<oImageInWindow>:FitRescale() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:FitToHeight() Method

Purpose

Fit the entire height of an image in a window.

Syntax

<oImageInWindow>:FitToHeight() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:FitToWidth() Method

Purpose

Fit the entire width of an image in a window.

Syntax

<oImageInWindow>:FitToWidth() ---> NIL

Arguments

None.

Returns

NIL

ImageInWindow:Grab() Method

Purpose

Captures an image on the screen.

Syntax

<oImageInWindow>:Grab(<liScreenGrabMode>) ---> NIL

Arguments

<liScreenGrabMode> Screen area to capture. Valid values are

LLI_SCREEN_CLIENT_AREA
Everything inside the window not including menus and borders.

LLI_SCREEN_DESKTOP
Entire desktop

LLI_SCREEN_WINDOW
Everything inside the window including menus and borders.

Returns

NIL

Description

This method is useful in capturing various portions of the screen such as dialog windows or forms.

ImageInWindow:IdleOff() Method

Purpose

Disable the Idle callback function

Syntax

<oImageInWindow>:IdleOff() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:IdleOn() Method

Purpose

Enable the Idle callback function

Syntax

<oImageInWindow>:IdleOn(<iRepeat>) ---> NIL

Arguments

<iRepeat> The number of times to call the Idle callback function

Returns

NIL

ImageInWindow:Information() Method

Purpose

Display image information in a window.

Syntax

ImageInWindow:Information() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:Init() Method

Purpose

Creates a new ImageInWindow object.

Syntax

ImageInWindow{ <oWindow>, <sFileName>, <lGetFromScanner> } ---> SELF

Arguments

<oWindow> Window to use when displaying the image.

<sFileName> Image to open.

<lGetFromScanner> Logical flag if the image is to be retrieved from the scanner.

Returns

SELF

Description

This will also setup the image to use the proper color palette.

ImageInWindow:IsLoaded() Method

Purpose

Checks if an image is loaded in the ImageInWindow.

Syntax

<oImageInWindow>:IsLoaded() ---> <lLoaded>

Arguments

None

Returns

<lLoaded> If the image is loaded

ImageInWindow:Load() Method

Purpose

Load an image file.

Syntax

<oImageInWindow>:Load(<sFileName>, <liFileFormat>) ---> NIL

Arguments

<sFileName> Image file name to load.

<liFileFormat> File format. See Editions for supported file formats. If this is not specified,
LLI_DISK_AUTO will be used

Returns

NIL

Description

This method calls iGet() with LLI_DISK and stores the image in a protected class instance dwDisImage

ImageInWindow:MemoryImage() Method

Purpose

Syntax

<oImageInWindow>:MemoryImage() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:MemoryImage16() Method

Purpose

Syntax

<oImageInWindow>:MemoryImage16() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:MemoryImage16M() Method

Purpose

Syntax

<oImageInWindow>:MemoryImage16M() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:MemoryImage256() Method

Purpose

Syntax

<oImageInWindow>:MemoryImage256() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:MemoryImageBW() Method

Purpose

Syntax

<oImageInWindow>:MemoryImageBW() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:Print() Method

Purpose

Syntax

<oImageInWindow>:Print() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:Original() Method

Purpose

Reset an image to its original state.

Syntax

<oImageInWindow>:Original() ---> NIL

Arguments

None

Returns

NIL

ImageInWindow:Rotate() Method

Purpose

Rotate an image.

Syntax

<oImageInWindow>:Rotate(<siTurnAngle>) ---> NIL

Arguments

<siTurnAngle> Angle to turn the image or document.

Returns

NIL

ImageInWindow:SaveImageAs() Method

Purpose

Display a dialog and save a loaded image to disk using the selected file format.

Syntax

<oImageInWindow>:SaveImageAs() ---> NIL

Arguments

None

Returns

NIL

Description

This will prompt a user with a dialog containing several file formats to select as options. It will then
proceed to save the loaded image using the selected file format.

ImageInWindow:Scan() Method

Purpose

Scan an image.

Syntax

<oImageInWindow>:Scan(<sFileName>) ---> NIL

Arguments

<sFileName> File name to save the scanned image to.

Returns

NIL

Description

You can use oImageInWindow>:IsLoaded() to determine if an image was successfully loaded or scanned.

ImageInWindow:SwapSharedExclusive() Method

Purpose

Toggles the mode of a color palette between Shared and Exclusive.

Syntax

ImageInWindow:SwapSharedExclusive() ---> NIL

Arguments

None

Returns

NIL

Description

An Exclusive color palette provides for best results. However, if you are viewing several images
simultaneously you may require setting the color palette to Shared. A Shared color palette is comprised of
an optimized selection of colors based on available video colors and the colors required by the images
themselves. Light Lib Images uses sophisticated calculations when establishing the a Shared palette.

ImageInWindow:Zoom() Method

Purpose

Zoom an image by a passed value.

Syntax

ImageInWindow:Zoom(<fZoomFactorX>, <fZoomFactorY>) ---> NIL

Arguments

<fZoomFactorX> Scaling factor for the X axis

<fZoomFactorY> Scaling factor for the Y axis

Returns

NIL

ImageWindow Class

Purpose

Provide a window capable of displaying an image.

Properties
None

Methods
Close()
ColorOperations()
Crop()
Destroy()
Expose()
FileExit()
FitInWindow()
FitRelease()
FitToHeight()
FitToWidth()
GrabClientArea()
GrabDeskTop()
GrabWindow()
HorizontalScroll()
Information()
Init()
Load()
MouseButtonDown()
MouseButtonUp()
MouseDrag()
Open()
Print()
PrinterSetup()
Resize()
RotateInvert()
RotateLeft()
RotateRight()
SaveAs()
Scan()
ScanAndSave()
SwapSharedExclusive()
VerticalScroll()
Zoom10In()
Zoom10Out()
Zoom25In()
Zoom25Out()

System Properties
These properties are used internally. The are provided as reference only and should NEVER be accessed
directly in your applications.
oImageInWindow Export
oScrollBarHor Export
oScrollBarVer Export

Inherits From

(No ancestors)

Inherited By

(No descendants)

ImageWindow:oImageInWindow Export

Description

Reference to the ImageInWindow object.

Type

OBJECT

ImageWindow:oScrollBarHor Export

Description

Reference to a Horizontal Scroll Bar object.

Type

OBJECT WindowHorizontalScrollBar

ImageWindow:oScrollBarVer Export

Description

Reference to a Horizontal Scroll Bar object.

Type

OBJECT WindowVerticalScrollBar

ImageWindow:Close() Method

Purpose

Close the window containing an image.

Syntax

<oImageWindow>:Close() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:ColorOperations() Method

Purpose

Provide a dialog which allows for performing various operations on an image (eg. dithering, quantising,
grayscaling etc.)

Syntax

<oImageWindow>:ColorOperations() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:Crop() Method

Purpose

Crop a selected part of an image.

Syntax

<oImageWindow>:Crop() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:Destroy() Method

Purpose

Destroy the ImageWindow object.

Syntax

<oImageWindow>:Destroy() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:Expose() Method

Purpose

Display an image in a window.

Syntax

<oImageWindow>:Expose(<oEvent>) ---> NIL

Arguments

<oEvent>

Returns

NIL

ImageWindow:FileExit() Method

Purpose

Post a message to have the window closed.

Syntax

<oImageWindow>:FileExit() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:FitInWindow() Method

Purpose

Fits an image or document completely in a window.

Syntax

<oImageWindow>:FitInWindow() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:FitRelease() Method

Purpose

Releases an image that was previously fit in a Window.

Syntax

<oImageWindow>:FitRelease() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:FitToHeight() Method

Purpose

Fit the entire height of an image in a window.

Syntax

<oImageWindow>:FitToHeight() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:FitToWidth() Method

Purpose

Fit the entire width of an image in a window.

Syntax

<oImageWindow>:FitToWidth() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:GrabClientArea() Method

Purpose

Captures the window contents.

Syntax

<oImageWindow>:GrabClientArea() ---> NIL

Arguments

None

Returns

 NIL

Description

This method is useful in capturing various portions of the screen such as dialog windows or forms. This
method does not capture the window's menus and borders.

See also: ImageWindow:GrabDeskTop(), ImageWindow:GrabWindow()

ImageWindow:GrabDeskTop() Method

Purpose

Captures the entire desktop.

Syntax

<oImageWindow>:GrabDeskTop() ---> NIL

Arguments

None

Returns

NIL

Description

This method is useful in capturing the desktop.

See also: ImageWindow:GrabClientArea(), ImageWindow:GrabWindow()

ImageWindow:GrabWindow() Method

Purpose

Captures everything in a window.

Syntax

<oImageWindow>:GrabWindow() ---> NIL

Arguments

None

Returns

NIL

Description

This method is useful in capturing various portions of the screen such as dialog windows or forms. This
method captures the window and its menus.

See also: ImageWindow:GrabClientArea(), ImageWindow:GrabDeskTop()

ImageWindow:HorizontalScroll() Method

Purpose

Allows the thumb position on the Horizontal Scroll bar to position an image in a window.

Syntax

<oImageWindow>:HorizontalScroll() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:Information() Method

Purpose

Display image information in a window.

Syntax

<oImageWindow>:Information() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:Init() Method

Purpose

Creates a new ImageWindow object.

Syntax

ImageWindow{ <oParentWindow>, <sFileName>, <lGetFromScanner> } ---> SELF

Arguments

<oParentWindow> Window to use when displaying the image

<sFileName> Image to open.

<lGetFromScanner> Logical flag if the image is to be retrieved from the scanner.

Returns

SELF Reference to the image window

ImageWindow:Load() Method

Purpose

Load an image file

Syntax

<oImageWindow>:Load(<sFileName>, <liFormat>) ---> NIL

Arguments

<sFileName> Image file name to load.

<liFileFormat> File format. See Editions for supported file formats. If this is not specified,
LLI_DISK_AUTO will be used.

Returns

NIL

ImageWindow:MouseButtonDown() Method

Purpose

Syntax

<oImageWindow>:MouseButtonDown(<oMouseEvent>) ---> NIL

Arguments

<oMouseEvent> Mouse event.

Returns

NIL

Description

This is used in conjunction with ImageWindow:Crop()

ImageWindow:MouseButtonUp() Method

Purpose

Syntax

<oImageWindow>:MouseButtonUp(<oMouseEvent>) ---> NIL

Arguments

<oMouseEvent> Mouse event object

Returns

NIL

Description

This is used in conjunction with ImageWindow:Crop()

ImageWindow:MouseDrag() Method

Purpose

Allow a selected region on an image to be dragged.

Syntax

<oImageWindow>:MouseDrag(<oMouseEvent>) ---> NIL

Arguments

<oMouseEvent> Mouse event object

Returns

NIL

Description

This is used in conjunction with ImageWindow:Crop()

ImageWindow:Open() Method

Purpose

Display an Open File dialog.

Syntax

<oImageWindow>:Open() ---> NIL

Arguments

None

Returns

NIL

Description

Allows the selection of image or document files from the standard windows file open dialog.

ImageWindow:Print() Method

Purpose

Print an image

Syntax

<oImageWindow>:Print() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:PrinterSetup() Method

Purpose

Display the Printer Setup dialog.

Syntax

<oImageWindow>:PrinterSetup() ---> NIL

Arguments

None

Returns

NIL

Description

Calls the standard windows printer setup dialog.

ImageWindow:Resize() Method

Purpose

Resize an ImageWindow object.

Syntax

<oImageWindow>:Resize(<oResizeEvent>) ---> NIL

Arguments

<oResizeEvent> Resizes a window.

Returns

NIL

ImageWindow:RotateInvert() Method

Purpose

Rotate an image 180 degrees.

Syntax

<oImageWindow>:RotateInvert() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:RotateLeft() Method

Purpose

Rotate an image 270 degrees.

Syntax

<oImageWindow>:RotateLeft() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:RotateRight() Method

Purpose

Rotate an image 90 degrees.

Syntax

<oImageWindow>:RotateRight() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:SaveAs() Method

Purpose

Display a dialog and save a loaded image to disk using the selected file format.

Syntax

<oImageWindow>:SaveAs() ---> NIL

Arguments

None

Returns

NIL

Description

This will prompt a user with a dialog containing several file formats to select as options. It will then
proceed to save the loaded image using the selected file format.

ImageWindow:Scan() Method

Purpose

Scan an image.

Syntax

<oImageWindow>:Scan() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:ScanAndSave() Method

Purpose

Scan an image and save it to disk.

Syntax

<oImageWindow>:ScanAndSave() ---> NIL

Arguments

None

Returns

NIL

ImageWindow:SwapSharedExclusive() Method

Purpose

Toggles the mode of a color palette between Shared and Exclusive.

Syntax

<oImageWindow>:SwapShardExclusive() ---> NIL

Arguments

None

Returns

NIL

Description

An Exclusive color palette provides for best results. However, if you are viewing several images
simultaneously you may require setting the color palette to Shared. A Shared color palette is comprised of
an optimized selection of colors based on available video colors and the colors required by the images
themselves. Light Lib Images uses sophisticated calculations when establishing a Shared palette.

ImageWindow:VerticalScroll() Method

Purpose

Syntax

<oImageWindow>:VerticalScroll(<oScrollEvent>) ---> NIL

Arguments

<oScrollEvent> Scroll Event

Returns

NIL

ImageWindow:Zoom10In() Method

Purpose

Enlarge the image by a 10% factor.

Syntax

<oImageWindow>:Zoom10In() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageWindow:Zoom10Out() Method

Purpose

Decrease the image by a 10% factor.

Syntax

<oImageWindow>:Zoom10Out() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageWindow:Zoom25In() Method

Purpose

Enlarge the image by a 25% factor.

Syntax

<oImageWindow>:Zoom25In() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageWindow:Zoom25Out() Method

Purpose

Decrease the image by a 25% factor.

Syntax

<oImageWindow>:Zoom25Out() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageWindowControl Class

Purpose

Provide a control capable of displaying an image. This class provides the exact same functionality as the
ImageWindow Class.

Properties
None

Methods
Close()
ColorOperations()
Crop()
Destroy()
DisplayBorder()
Expose()
FileExit()
FitInWindow()
FitRelease()
FitToHeight()
FitToWidth()
HorizontalScroll()
Information()
Init()
Load()
MouseButtonDown()
MouseButtonUp()
MouseDrag()
Open()
Original()
Print()
PrinterSetup()
RegisterLightLibDataWindowClient()
Resize()
RotateInvert()
RotateLeft()
RotateRight()
SaveAs()
Scan()
ScanAndSave()
SwapSharedExclusive()
VerticalScroll()
Zoom10In()
Zoom10Out()
Zoom25In()
Zoom25Out()

System Properties
These properties are used internally. The are provided as reference only and should NEVER be accessed
directly in your applications.
oBottomLeft Export
oImageInWindow Export
oOwner Export

oScrollBarHor Export
oScrollBarVer Export
oTopRight Export

Inherits From

(No ancestors)

Inherited By

(No descendants)

ImageWindowControl:oBottomLeft Export

Description

Reference to the ImageWindowControl object's bottom left Point object.

Type

OBJECT Point

ImageWindowControl:oImageInWindow Export

Description

Reference to the ImageWindowControl object.

Type

OBJECT

ImageWindowControl:oOwner Export

Description

Reference to the ImageWindowControl owner object.

Type

OBJECT

ImageWindowControl:oScrollBarHor Export

Description

Reference to a Horizontal Scroll Bar object.

Type

OBJECT WindowHorizontalScrollBar

ImageWindowControl:oScrollBarVer Export

Description

Reference to a Horizontal Scroll Bar object.

Type

OBJECT WindowVerticalScrollBar

ImageWindowControl:oTopRight Export

Description

Reference to the ImageWindowControl object's top right Point object.

Type

OBJECT Point

ImageWindowControl:Close() Method

Purpose

Close the window containing an image.

Syntax

<oImageWindowControl>:Close() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:ColorOperations() Method

Purpose

Provide a dialog which allows for performing various operations on an image (eg. dithering, quantising,
grayscaling etc.)

Syntax

<oImageWindowControl>:ColorOperations() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:Crop() Method

Purpose

Crop a selected part of an image.

Syntax

<oImageWindowControl>:Crop() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:Destroy() Method

Purpose

Destroy the ImageWindow object.

Syntax

<oImageWindowControl>:Destroy() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:DisplayBorder() Method

Purpose

Display the border of the control

Syntax

<oImageWindowControl>:DisplayBorder() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:Expose() Method

Purpose

Display an image in a window.

Syntax

<oImageWindowControl>:Expose(<oEvent>) ---> NIL

Arguments

<oEvent>

Returns

NIL

ImageWindowControl:FileExit() Method

Purpose

Post a message to have the window closed.

Syntax

<oImageWindowControl>:FileExit() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:FitInWindow() Method

Purpose

Fits an image or document completely in a window.

Syntax

<oImageWindowControl>:FitInWindow() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:FitRelease() Method

Purpose

Releases an image that was previously fit in a Window.

Syntax

<oImageWindowControl>:FitRelease() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:FitToHeight() Method

Purpose

Fit the entire height of an image in a window.

Syntax

<oImageWindowControl>:FitToHeight() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:FitToWidth() Method

Purpose

Fit the entire width of an image in a window.

Syntax

<oImageWindowControl>:FitToWidth() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:HorizontalScroll() Method

Purpose

Allows the thumb position on the Horizontal Scroll bar to position an image in a window.

Syntax

<oImageWindowControl>:HorizontalScroll() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:Information() Method

Purpose

Display image information in a window.

Syntax

<oImageWindowControl>:Information() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:Init() Method

Purpose

Creates a new ImageWindowControl object.

Syntax

<oImageWindowControl>:Init(<oParentWindow>, <sFileName>, <lGetFromScanner>) ---> SELF

Arguments

<oParentWindow> Window to use when displaying the image

<sFileName> Image to open.

<lGetFromScanner> Logical flag if the image is to be retrieved from the scanner.

Returns

SELF Reference to the image window

ImageWindowControl:Load() Method

Purpose

Load an image file

Syntax

<oImageWindowControl>:Load(<sFileName>, <liFormat>) ---> NIL

Arguments

<sFileName> Image file name to load.

<liFileFormat> File format. See for supported file formats. If this is not specified,
LLI_DISK_AUTO will be used.

Returns

NIL

ImageWindowControl:MouseButtonDown() Method

Purpose

Syntax

<oImageWindowControl>:MouseButtonDown(<oMouseEvent>) ---> NIL

Arguments

<oMouseEvent>Mouse event.

Returns

NIL

Description

This is used in conjunction with ImageWindow:Crop()

ImageWindowControl:MouseButtonUp() Method

Purpose

Syntax

<oImageWindowControl>:MouseButtonUp(<oMouseEvent>) ---> NIL

Arguments

<oMouseEvent> Mouse event object

Returns

NIL

Description

This is used in conjunction with ImageWindow:Crop()

ImageWindowControl:MouseDrag() Method

Purpose

Allow a selected region on an image to be dragged.

Syntax

<oImageWindowControl>:MouseDrag(<oMouseEvent>) ---> NIL

Arguments

<oMouseEvent> Mouse event object

Returns

NIL

Description

This is used in conjunction with ImageWindow:Crop()

ImageWindowControl:Open() Method

Purpose

Display an Open File dialog.

Syntax

<oImageWindowControl>:Open() ---> NIL

Arguments

None

Returns

NIL

Description

Allows the selection of image or document files from the standard windows file open dialog.

ImageWindowControl:Original() Method

Purpose

Restore the image to the original.

Syntax

<oImageWindowControl>:Original() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:Print() Method

Purpose

Print an image

Syntax

<oImageWindowControl>:Print() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:PrinterSetup() Method

Purpose

Display the Printer Setup dialog.

Syntax

<oImageWindowControl>:PrinterSetup() ---> NIL

Arguments

None

Returns

NIL

Description

Calls the standard windows printer setup dialog.

ImageWindowControl:RegisterLightLibDataWindowClient() Method

Purpose

Register the Image control with the LightLibDataWindow.

Syntax

<oImageWindowControl>:RegisterLightLibDataWindowClient(<cDataFieldName>) ---> NIL

Arguments

<cDataFieldName> Field name in the data source which contains the image data.

Returns

NIL

ImageWindowControl:Resize() Method

Purpose

Resize an ImageWindow object.

Syntax

<oImageWindowControl>:Resize(<oResizeEvent>) ---> NIL

Arguments

<oResizeEvent> Resizes a window.

Returns

NIL

ImageWindowControl:RotateInvert() Method

Purpose

Rotate an image 180 degrees.

Syntax

<oImageWindowControl>:RotateInvert() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:RotateLeft() Method

Purpose

Rotate an image 270 degrees.

Syntax

<oImageWindowControl>:RotateLeft() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:RotateRight() Method

Purpose

Rotate an image 90 degrees.

Syntax

<oImageWindowControl>:RotateRight() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:SaveAs() Method

Purpose

Display a dialog and save a loaded image to disk using the selected file format.

Syntax

<oImageWindowControl>:SaveAs() ---> NIL

Arguments

None

Returns

NIL

Description

This will prompt a user with a dialog containing several file formats to select as options. It will then
proceed to save the loaded image using the selected file format.

ImageWindowControl:Scan() Method

Purpose

Scan an image.

Syntax

<oImageWindowControl>:Scan() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:ScanAndSave() Method

Purpose

Scan an image and save it to disk.

Syntax

<oImageWindowControl>:ScanAndSave() ---> NIL

Arguments

None

Returns

NIL

ImageWindowControl:SwapSharedExclusive() Method

Purpose

Toggles the mode of a color palette between Shared and Exclusive.

Syntax

<oImageWindowControl>:SwapShardExclusive() ---> NIL

Arguments

None

Returns

NIL

Description

An Exclusive color palette provides for best results. However, if you are viewing several images
simultaneously you may require setting the color palette to Shared. A Shared color palette is comprised of
an optimized selection of colors based on available video colors and the colors required by the images
themselves. Light Lib Images uses sophisticated calculations when establishing a Shared palette.

ImageWindowControl:VerticalScroll() Method

Purpose

Syntax

<oImageWindowControl>:VerticalScroll(<oScrollEvent>) ---> NIL

Arguments

<oScrollEvent>Scroll Event

Returns

NIL

ImageWindowControl:Zoom10In() Method

Purpose

Enlarge the image by a 10% factor.

Syntax

<oImageWindowControl>:Zoom10In() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageWindowControl:Zoom10Out() Method

Purpose

Decrease the image by a 10% factor.

Syntax

<oImageWindowControl>:Zoom10Out() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageWindowControl:Zoom25In() Method

Purpose

Enlarge the image by a 25% factor.

Syntax

<oImageWindowControl>:Zoom25In() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageWindowControl:Zoom25Out() Method

Purpose

Decrease the image by a 25% factor.

Syntax

<oImageWindowControl>:Zoom25Out() ---> NIL

Arguments

None

Returns

NIL

Description

CA-Visual Objects does not allow passing parameters to methods when they are accessed via the Menu
painter. This Zoom() method is provided to allow quick zooming capabilities in such situations.

ImageIdle() CA-Visual Objects

Purpose

Display a gauge if the operation to be performed requires one.

Syntax

ImageIdle(dwState AS DWORD,
liValue AS LONGINT,
dwLLImage AS DWORD,
liCaller AS LONGINT,
dwDevice AS DWORD,
dwFormat AS DWORD,
dwUserParam AS DWORD) --> liStatusMessage CallBack

Arguments

dwState The state of the process. A process goes through 3 states:

LLI_IDLE_INIT First time this function is called
LLI_IDLE_IDLE During the operation
LLI_IDLE_EXIT Last time function is called

liValue Number of times to call this function

dwLLImage Reference to the image

liCaller Type of operation being performed.There are 3 values:

LLI_CALLER_COPY Copy operation
LLI_CALLER_GET Load or Get operation
LLI_CALLER_PUT Display or Put operation

dwDevice Device being used. The following are valid

LLI_DISK
LLI_COPY_CLONE
LLI_COPY_ZOOM
LLI_COPY_TURN
LLI_COPY_QUANTIZE

dwFormat Format of the operation. The following are valid
LLI_DISK_BMP
LLI_DISK_PCX
LLI_DISK_TIF
LLI_DISK_GIF
LLI_DISK_JPG
LLI_TURN_90
LLI_TURN_270

dwUserParam Not used.

Returns

liStatusMessage Current state of the idle operation

Description

This function will display a gauge only if one is need. It uses the lImageOperationComplex() function to
determine whether the operation to be performed will take enough time to warrant displaying a gauge.

ImageOperationComplex() CA-Visual Objects

Purpose

Determine the general complexity of an operation being performed.

Note: This calculation is purely subjective and is provided only as a guideline.

Syntax

lImageOperationComplex(dwLLImage AS DWORD,

liCaller AS LONGINT,
dwDevice AS DWORD,
dwFormat AS DWORD,
oImageWindow AS OBJECT) --> r4Factor

Arguments

dwLLImage An OBJECT or DWORD pointing to any Light Lib Image Object

liCaller Type of operation being performed.There are 3 values:

LLI_CALLER_COPY Copy operation
LLI_CALLER_GET Load or Get operation
LLI_CALLER_PUT Display or Put operation

dwDevice Device being used. The following are valid

LLI_DISK
LLI_COPY_CLONE
LLI_COPY_ZOOM
LLI_COPY_TURN
LLI_COPY_QUANTIZE

dwFormat Format of the operation. The following are valid
LLI_DISK_BMP
LLI_DISK_PCX
LLI_DISK_TIF
LLI_DISK_GIF
LLI_DISK_JPG
LLI_TURN_90
LLI_TURN_270

oImageWindow Reference to the ImageWindow object

Returns

r4Factor The factor of complexity for the given operation, type of file format and size of
image being used.

Description

This function is used to calculate how complex an image operation is. But in general, the length of time
required to perform an operation depends on the parameters described above.

For example, an image that is 1000 pixels by 1000 pixels with 256 colors requires approximately 1Meg of

memory will require more time to perform any given operation than an image which requires 200K of
memory. In addition, it is known that a LLI_COPY_TURN operation takes longer than a
LLI_COPY_ZOOM and that turning an image 90 or 270 degrees takes longer than turning an image 180
degrees. Using all of these factors, we have created a simple guideline for calculating the complexity of
any given operation. In turn, this value can be used for determining the approximate time needed to
complete the operation.

Sample not available yet.

MS-Visual Basic

Functions & Classes

Introduction

Light Lib Images provides several support files for use with MS-Visual Basic.

Files

MS-Visual Basic Functions & Classes

iVBStruct()
iVBString2Num()
iVBNum2String()

C/C++

Functions & Classes

Introduction
LightLib Images provides several support files for use with C/C++.

Files

C/C++ Functions & Classes

Common Problems and Questions

Bad Color Palettes
Strange Colors
Unable to load a DLL at runtime
DLL Crashes
Out of Memory

"Bad" Color Palettes

Light Lib Images relies on the Windows API color palette for its use of colors. When operating Windows in
256 color mode, some limitations may apply in displaying full color images. Particularly when trying to
display several images simultaneously. The result is "bad" color palettes for images that are not in focus.

Light Lib Images supports shared color palettes. This means that when an image is displayed, Light Lib
Images requests Windows for an optimized color palette for the image. If another image is displayed, a
second request for a color palette specific to the new image is made. This allows two images to be
properly displayed simultaneously through efficient use of the color palette.

Light Lib Images checks for the number of bits or colors available on the screen device. If the number is
256, Light Lib Images automatically switches to LLI_PALETTE_SHARED. If it is an MDI application and 2
images are loaded in Child windows, both images will have a good representation. You will get a perfect
representation of an image by giving focus to one of the images in the Child window.

Displaying multiple 256 color images using a 256 color palette is discouraged. Color palettes do not exist
when running Windows in 65K color mode. Applications run in "true colors". Images can access as many
colors as needed. Using Windows in 65K colors is highly recommended.

LLI_PALETTE_SHARED
LLI_PALETTE_EXCLUSIVE

The second problem is a Commonview bug. If you look at all the message/method linked to closing a
DataWindow (see STD sample for CA-Visual Objects), you will find some direct Windows API call.
(WM_CLOSE). This leads us to believe that there is a bug in the DataWindow, which in turn is inherited
by Light Lib Images. We suggest that windows be closed using File/Close or File/Exit until this part of
CA-Visual Objects is more stable.

Please note that Light Lib Images' AEFs are compatible with Pre-release version of CA-Visual Objects
(Build #388) and these problems will be corrected in the future releases.

Strange Colors

A problem arises when you attempt to display simultaneously a 256-color image with lots of yellows and a
256-color image with lots of greens.

If you use LLI_PALETTE_EXCLUSIVE, Light Lib Graphics will use 256 yellow levels to display the yellow
picture. This guarantees a very good display. But if you display the green image with the same
LLI_PALETTE_EXCLUSIVE parameters, the palette, which is the same for the entire screen, will change
to be optimized for the green image and the yellow image already being displayed will be altered.

The solution is to use LLI_PALETTE_SHARED parameters. In this case, Light Lib Images will use a 256-
color linear palette, and all images displayed at the same time on the screen will use the same linear
palette. You will not get as good a screen display as if the yellow or green image alone was displayed, but
the result will be realistic.

In summary, to display one image at a time and get the best possible results, use
LLI_PALETTE_EXCLUSIVE. This is the most common case. To display more than one image at a time,
use LLI_PALETTE_SHARED to get a realistic result.

Tips & Techniques

The most important programming technique to implement when manipulating or transforming an image
(such as zooming), is to maintain 2 separate pointers to the image. One pointer should be for the original
image and the second pointer should should be for the transformed or zoomed image.

In other words, always perform operations such as zooming and copying on the original image but store
the resultant image to the second variable or image pointer. This technique is very useful because it
allows an image to maintain its sharpness, especially when zooming in and zooming out.

If you don't implement this technique, you may find that an image may lose sharpness after many
transformations. This is logical because each transformation distorts the data.

Editions

Light Lib Images comes in two editions. Light Lib Images and Light Lib Images PRO. Essentially the
difference is the types of compression and different file formats supported by each. Both products use the
same image processing techniques and imaging algorithms to process images.

Light Lib Images

Format Type Compression Support
BMP B&W,Color Uncompressed
PCX B&W,Color RLE (Run Length Encoding)
TIF B&W,Color Uncompressed
TIF B&W,Color RLE (Run Length Encoding)
TIF B&W CCITT 1D Modified Huffman

Light Lib Images PRO

In addition to the standard features, the PRO edition provides support for more advanced and powerful
image/document formats and compression algorithms.

Format Type Compression Support
TIF B&W CCITT G3 Fax Group 3
TIF B&W CCITT G4 Fax Group 4
TIF B&W,Color LZW (Lempel Ziv Welch)
GIF Color LZW (Lempel Ziv Welch)
JPG Color JPEG
BLOB Color Native Light Lib BLOB support:

iBlob2Img()

Purpose

Convert a BLOB structure pointer to an image structure pointer.

Syntax

iBlob2Img(Blob) -> ptrImg

Arguments

Blob Pointer to a BLOB data structure. It must be the result of iImg2Blob()

Returns

ptrImage Pointer to an image structure containing the image.

Description

Light Lib Images stores images in a special format which has minimal memory requirements and is
optimized for speed.

Therefore, if you try to save ptrImg directly to a database, such as Oracle or equivalent such system, in a
BLOB field, all of the image structure elements will be saved except the element containing the image
itself. This is because the image is represented in a format known only to Light Lib Images. The solution
is to convert ptrImg's image element to a character string and then process the character string as if it
were the image.

Notes

Check the features of the product supporting the BLOBs. Some limitations may apply like 64Kb maximum
size. This limitation is often reached when dealing with images. If this is the case, simply store separate
image files on disk and store a reference (file name) to the image.

Example

The most common example is the need to store a photo for each person in a file containing people.

A first solution is to create a PCX or TIF file for each person (or record), and to organize the individual
PCX or TIF file by storing the file name in a Character field for each person.

To Display an image:

// Get the name of the file containing the employee's picture.
// Assume that the image is in TIF format
cPhotoFile = DBF->PHOTOFILE

// Load the TIF file who's file name
// is stored in a character field
ptrImg = iGet(dwAppLLIHnd,

LLI_DISK,
LLI_DISK_TIF,
siTop,
siLeft,
siBottom,

siRight,
cPhotoFile,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM
dwUserParam)

// Display the image to the screen:

iPut(ptrImg,
siTop,
siLeft,
siBottom,
siRight,
LLI_SCREEN,
LLI_SCREEN_WINDOW_HANDLE,
0,
0,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM
dwUserParam)

Another solution is to store each employee's picture directly into the database. The image's data type
would be in BLOB format. Therefore, the database engine or file format would need to support BLOB's.
Your application would no longer have multiple image files (PCX, TIF etc), but rather the actual image
stored in each employee's each record.

To Display a picture using this technique...

//Get the actual image or employee picture
// from the database. This image would be
// stored in BLOB format
Blob = DBF->BLOBDATA

// You will need to convert the BLOB to an
// image structure pointer
ptrImg = iBlob2Img(Blob)

// Display the image to the screen
iPut(ptrImg,

siTop,
siLeft,
siBottom,
siRight,
LLI_SCREEN,

LLI_SCREEN_WINDOW_HANDLE,
0,
0,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,

LLI_VOID_PARAM,
LLI_VOID_PARAM,
dwUserParam)

iCopy() DLL Functions

Purpose

Copies an image in memory, possibly modifying it.

Syntax

iCopy(dwLLImage AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
dwTransformMode AS DWORD,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD,
dwUserParam AS DWORD) -> ptrNewImg

Arguments

dwLLImage Source image. This image must be the result of iGet().

siX1, siY1, siX2, siY2 These represent the portion of the ORIGINAL image to copy, not the TARGET
image. Specify these coordinates to work on a portion of the original image. Use
LLI_FULL_SIZE to process the entire image. The units are in pixels.

dwTransformMode iCopy() is a versatile function. It can perform several different operations. This
specifies the type of operation to perform on an image and the following
predefined values are available:

LLI_COPY_CLONE Returns a second image or image portion identical to the

original image.

LLI_COPY_DITHER Returns a second image which is dithered

 LLI_COPY_ZOOM Returns a second image or image portion transformed
by a Zoom effect.

LLI_COPY_TURN Returns a second image or image portion transformed
by a Rotation effect.

dwParam1-dwParam5 These parameters depend on the type of operation you are performing. The
following are valid operations

LLI_COPY_CLONE Requires no extra parameters.

LLI_COPY_ZOOM dwParam1 Width of the Target
image in pixels

dwParam2 Height of the
Target image in pixels

LLI_COPY_TURN

dwParam1 Direction to turn the image.
LLI_TURN_90
LLI_TURN_180
LLI_TURN_270

dwUserParam This parameter is passed to your Idle user defined callback function. It should be
a pointer to any kind of structure. See Referencing an object from a CallBack
Function

Returns

ptrNewImg Pointer to an image structure containing the image.

Description

iCopy() is actually a combination of the functions iGet() and iPut() , but works only on images already in
memory.

Notes

To pan across a large image which doesn't fit entirely in a window, simply iPut() portions of the image (use
the size of the window to establish the coordinates) with movement coordinates corresponding to the
position of the upper left corner of your window. When the user moves across the image, change the
image portion displayed to reflect the movements.

If you want the same functionality in a zoom operation, simple image projection is not enough. As you will
probably allow users to zoom in and out of the image, you will need to keep 2 pointers to the same image.
One pointer to the original image and a second to the zoomed image. When the user changes the zoom
factor, use iCopy() to create a full copy of the original image at the requested factor. This is the second
image pointer which contains the zoomed image and this is what you will display. Use iCopy(ptrOrigImg,
LLI_COPY_CLONE, ...) to obtain a copy or clone of the original image. This is the same as having a
projection factor of 1. This 2 pointer technique can be extended to the rotation of an image.Don't forget to
destroy the two pointers to the image structure when you no longer need them!

Examples

Consider a black and white image ptrImg in A4-B4 format, about 2400 pixels wide (8 inches) by 3300
pixels high (11 inches). This image pointer was created by either reading a document from a scanner
using iGet(LLI_SCANNER) , or by reading a file from disk with iGet(LLI_DISK) or was created in
memory with iGet(LLI_MEMORY).

To see the image on screen, we use iPut() with the following syntax:

iPut(ptrImg,
 LLI_FULL_SIZE,
 LLI_FULL_SIZE,
 LLI_FULL_SIZE,
 LLI_FULL_SIZE,
 LLI_SCREEN, // Screen Device
 LLI_SCREEN_WINDOW_HANDLE,
 0,
 0,
 LLI_VOID_PARAM,
 LLI_VOID_PARAM,
 LLI_VOID_PARAM,
LLI_VOID_PARAM,

 LLI_VOID_PARAM,
 dwUserParam)

Since not many 2400x3300 pixel screens exist, the LLI_FULL_SIZE calls are overambitious and when
using a common 800x600 display, we are unable to see the entire image.By letting the user dynamically
change the origin of the image with the use of arrow keys or mouse, we can imagine having a fixed
display of 800x600 pixels which gets these pixels at different addresses on the page.

One image pixel still corresponds to one screen pixel. To obtain a full view, we must use iCopy(), since it
can deform the image.

ptrZoomImg = iCopy(ptrImg,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_COPY_ZOOM,
800,
600,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,

 dwUserParam)

This projects a 2400x3300 pixel image onto an 800x600 image. Displaying this gives the effect of a full
zoom on the image:

iPut(ptrZoomImg,
0,
0,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_SCREEN,
LLI_SCREEN_WINDOW_HANDLE,
0,
0,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
dwUserParam)

iErase() DLL Functions

Purpose

Remove an image from memory.

Syntax

iErase(ptrImg) -> ptrImg

Arguments

ptrImg The image to be erased or destroyed. ptrImg must be the result of iGet() or
iCopy()

Returns

ptrImg Calling iErase(ptrImg) is not enough, you must use the syntax: ptrImg =
iErase(ptrImg)

Description

Light Lib Images requires that you explicitly erase the pointer to an image structure from memory when
you no longer need it. See also oNew() and oDel()

Examples

// This example function reads a TIF file "cImgFile" from disk
Function PrintImg(cImgFile)

// Read or get the TIF file
AptrImg = iGet(LLI_DISK, // Device

LLI_DISK_TIF, // Format
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM)

// At this point, you can perform operations on the image etc.

// Erase the image from memory
ptrImg = iErase(ptrImg)

return (NIL)

iGet() DLL Functions

Purpose

Retrieve image data from a device.

Syntax

iGet(dwLLOwner AS DWORD,
dwDevice AS DWORD,
dwFormat AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD,
dwUserParam AS DWORD) -> ptrImg

Arguments

dwLLOwner A reference to the application handle created with oNew()

dwDevice Device from which the image data is read. Select one of the above bitmaps for
details on specific devices.

dwFormat Depends on the value of wDevice.

The following are the possible predefined combinations of values for these
parameters:

wDevice wFormat
LLI_DISK LLI_DISK_BMP

LLI_DISK_GIF
LLI_DISK_JPG
LLI_DISK_PCX
LLI_DISK_TIF

LLI_MEMORY LLI_MEMORY_BW
LLI_MEMORY_16
LLI_MEMORY_256
LLI_MEMORY_16M

LLI_SCANNER LLI_SCANNER_TWAIN
LLI_SCANNER_TWAIN_DIALOG

LLI_SCREEN LLI_SCREEN_DEVICE_CONTEXT
LLI_SCREEN_WINDOW_HANDLE

siX1, siY1, siX2, siY2 Represent the coordinates of the data rectangle retrieved from the device. You

can use LLI_FULL_SIZE to specify the entire device.

dwParam1-dwParam5 The extra parameters depend on the device. Select the specific device for further

info.

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

Returns

ptrImg Pointer to an image structure containing the image. If there is an error the value
returned is NIL.

Description

iGet() and iPut() are the two main functions of Light Lib Images.

iGet() reads data from any device (Disk, Screen, Scanner). The data is always read in the form of a
rectangle.

iImg2Blob() DLL Functions

Purpose

Convert an image to an array of characters strings.

Syntax

iImg2Blob(ptrImg) -> ptrBlob

Arguments

ptrImg A pointer to the image to be converted. ptrImg must be the result of iGet() or
iCopy()

Returns

ptrBlob A pointer to the BLOB.

Description

See iBlob2Img()

Example

See iBlob2Img()

iPack() DLL Functions

Purpose

Compress a Character string

Syntax

iPack(cToBeCompressed) ->cCompressed

Arguments

cToBeCompressed Character string to be compressed

Returns

cCompressed The compressed character string

Description

This function is used in conjunction with iUnPack() to compress character strings.

There is no direct connection between compressing data using iPack() and iUnPack() and image
manipulation. But since many languages need the ability to work with character strings instead of
pointers, Light Lib Images includes the ability to compress and uncompress character data which in turn
can represent images. These functions are very useful in dealing with large images. iPack() uses a LZW
algorithm which is efficient on strings with sizes greater than 256 Characters.

iPut() DLL Functions

Purpose

Send an image to a device.

Syntax

iPut(dwLLImage AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
dwDevice AS DWORD,
dwFormat AS DWORD,
siOffsetX AS SHORTINT,
siOffsetY AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD
dwUserParam AS DWORD) -> nil

Arguments

dwLLImage Pointer to the image structure containing the image. This pointer must be the
result of iGet() or iCopy()

siX1, siY1, siX2, siY2 These values represent the coordinates of the image to send to the device.
These coordinates are usually specified when working on a portion of the image.
You can use the predefined value LLI_FULL_SIZE to process the entire image.
Note that these are the coordinates of the image and not of the destination
device. To shift or offset the origin of the image on the destination device, you
must use siOffsetX and siOffsetY.

dwDevice Device to which the image data is sent. Select one of the above bitmaps for
details on specific devices.

dwFormat The type of device, to which the data will be sent. wFormat depends on the value
of wDevice. The following are the possible predefined combinations of these 2
parameters.

wDevice wFormat
LLI_DISK LLI_DISK_BMP

LLI_DISK_GIF
LLI_DISK_JPG
LLI_DISK_PCX
LLI_DISK_TIF

LLI_MEMORY LLI_MEMORY_BW
LLI_MEMORY_16
LLI_MEMORY_256
LLI_MEMORY_16M

LLI_PRINTER LLI_PRINTER

LLI_SCREEN LLI_SCREEN_DEVICE_CONTEXT
LLI_SCREEN_WINDOW_HANDLE

siOffsetX, siOffsetY These values represent the offset coordinates on the output device.The values
0,0 represent no offset. These coordinates are generally used to move or offset
the image on the target device. To use a portion of the image use the siX1, siY1,
siX2, siY2

dwParam1- dwParam5 These parameters depend on the device. Select the specific Device for further
help.

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

 Returns

NIL

Description

iPut() is one of the two main Light Lib Images functions, along with iGet() .

iPut() lets you send image data to any device (Disk, Screen, Printer). The data written is always in the
form of a rectangle.

iUnPack() DLL Functions

Purpose

Uncompress a compressed Character string.

Syntax

iUnPack(cCompressed) -> cUnCompress

Arguments

cCompress Character string previously compressed using iPack()

Returns

cUnCompress An uncompressed Character string of a previously compressed string.

Description

This function is used in conjunction with iPack() to restore compressed Character strings to its original
value.

There is no direct connection between compressing data using iPack() and iUnPack() and image
manipulation. But since many languages need the ability to work with character strings instead of
pointers, Light Lib Images includes the ability to compress and uncompress character data which in turn
can represent images. These functions are very useful in dealing with large images. iPack() uses a LZW
algorithm which is efficient on strings with sizes greater than 256 Characters.

iGet() Disk DLL Functions

Purpose

Retrieve image data from a Disk.

Syntax

 iGet(dwLLOwner AS DWORD,
LLI_DISK,
dwFormat AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD,
dwUserParam AS DWORD) -> ptrImg

Arguments

dwLLOwner A reference to the application handle created with oNew()

dwFormat The image or document file type. The following are the predefined values:

LLI_DISK_AUTO Format is determined based on file name extension
LLI_DISK_BMP BMP file format
LLI_DISK_GIF GIF file format
LLI_DISK_JPG JPG file format
LLI_DISK_PCX PCX file format
LLI_DISK_TIF TIF file format

siX1, siY1, siX2, siY2 These are coordinates that represent a rectangle of the image to be retrieved
from the file. You can use the predefined LLI_FULL_SIZE value to specify the
entire image. Devices use pixels to define these coordinates.

IdwParam1 Image file name.

dwParam2-dwParam5 Not used. Substitute each with LLI_VOID_PARAM

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

Returns

ptrImg Pointer to an image structure containing the image. If there is an error the value
returned is NIL.

 Description

iGet() and iPut() are the two main functions of Light Lib Images.

iGet() lets you read an image from disk. The image is always read in the form of a rectangle.

Examples

// This example shows how to retrieve a TIF image
// stored on a hard disk whose name is MyImage.TIF :

ptrImg = iGet(dwAppLliHnd,
LLI_DISK, // Device
LLI_DISK_TIF, // File format
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
"MyImage.TIF", // Name of the image File
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM
dwUserParam)

iGet() Memory DLL Functions

Purpose

Retrieve image data from memory. Reserves unused memory, (presizing a new image)

Syntax

iGet(dwLLOwner AS DWORD,
LLI_MEMORY,
dwFormat AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD,
dwUserParam AS DWORD) -> ptrImg

Arguments

dwLLOwner A reference to the application handle created with oNew()

wDevice LLI_MEMORY

wFormat The following are the possible predefined combinations of values for these
parameters:

LLI_MEMORY LLI_MEMORY_BW
LLI_MEMORY_16
LLI_MEMORY_256
LLI_MEMORY_16M

siX1, siY1, siX2, siY2 Represent the coordinates of the data rectangle retrieved from the device. You
can use LLI_FULL_SIZE to specify the entire device.

dwParam1-dwParam5 The extra parameters depend on the device. Select the specific device for further
info.

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

Returns

ptrImg Pointer to an image structure containing the image. If there is an error the value
returned is NIL.

Description

iGet() and iPut() are the two main functions of Light Lib Images.

iGet(LLI_MEMORY) lets you read an image in memory.The data read is always in the form of a
rectangle.

Examples

// This example shows how to create an empty image in memory.

ptrCopyImg = iGet(dwLLOwner,
LLI_MEMORY,
LLI_MEMORY_256,
0,
0,
1000,
1000,
LLI_VOID_PARAM,

LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,

LLI_VOID_PARAM
dwUserParam)

iGet() Scanner DLL Functions

Purpose

Retrieve image/document data from a scanner.

Syntax

iGet(dwLLOwner AS DWORD,

LLI_SCANNER,
dwFormat AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD,
dwUserParam AS DWORD) -> ptrImg

Arguments

dwLLOwner A reference to the application handle created with oNew()

dwFormat The type of scanner. The following are the available values:

LLI_SCANNER_TWAIN
This allows you to set the following extra parameters. End users will not be able
to modify anything.

LLI_SCANNER_TWAIN_DIALOG
This will present users with the Twain scanning dialog box from the installed
scanner. End users will be able to set all available scanner options.

siX1, siY1, siX2, siY2 These values represent the coordinates of the data rectangle retrieved from the
device. Youcan use the predefined LLI_FULL_SIZE value to specify the entire
device. Coordinates are in pixels. As the number of pixels involved depends on
the Scan Density, use millimeters to define these coordinates.

dwParam1 The scan density. dwParam1 can have one of the predefined density values:

LLI_DPI_75
LLI_DPI_100
LLI_DPI_150
LLI_DPI_300
LLI_DPI_600
LLI_DPI_1200

dwParam2 The scan luminosity. dwParam2 is represented in % and ranges from-100% to
+100%. A value of 0 corresponds to a standard image. To obtain a darker
document, use a negative value. To obtain a lighter document, use a positive
value.

dwParam3 The scan contrast. dwParam3 is represented in % and ranges from -100% to

+100%. This value has an effect on color scans only. A value of 0 corresponds to
a standard image. For more contrast, use a positive value. For less contrast, use
a negative value.

 dwParam4-dwParam5 Not used. Substitute with LLI_VOID_PARAM

 dwUserParam This parameter is passed to yourIdle callback function. It should be a pointer to
any kind of structure.

Returns

ptrImg Pointer to an image structure containing the image. If there is an error the value
returned is NIL.

Description

iGet() and iPut() are the two main functions of Light Lib Images.

iGet(LLI_SCANNER) lets you read an image/document directly from a scanner. The data read is always
in the form of a rectangle. The value returned is always a pointer to structure containing the image.

Examples

// This example shows how to read an entire document
// from a TWAIN compatible scanner using default values
// for for luminosity and contrast.

ptrImg = iGet(dwAppLliHnd,
LLI_SCANNER,
LLI_SCANNER_TWAIN,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_DPI_600, // Density
0, // Luminosity (0 is average)
0, // Contrast (0 is average)
LLI_VOID_PARAM,
LLI_VOID_PARAM.
dwUserParam)

iGet() Screen DLL Functions

Purpose

Retrieve image data from the screen.

Syntax

iGet(dwLLOwner AS DWORD,
LLI_SCREEN,
wFormat AS WORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD,
dwUserParam AS DWORD) -> ptrImg

Arguments

dwLLOwner A reference to the application handle created with oNew()

wFormat LLI_SCREEN_WINDOWS_HANDLE Window handle
LLI_SCREEN_DEVICE_CONTEXT Device context

siX1, siY1, siX2, siY2 These values represent the coordinates in pixels of the data rectangle retrieved
from the device. You can use the predefined LLI_FULL_SIZE value to specify the
entire device.

dwParam1 This parameter depends on the value of wFormat.

wFormat dwParam1
LLI_SCREEN_WINDOW_HANDLE Window handle
LLI_SCREEN_DEVICE_CONTEXT Device Context handle

dwParam2 The type of color palette to use. The following are valid

LLI_PALETTE_SHARED
LLI_PALETTE_EXCLUSIVE

This parameter is very important if windows is being run in 256 color mode or
less and you need to display 2 images simultaneously. See Common Problems
for details.

dwParam3-dwParam5 Not used. Substitute each with LLI_VOID_PARAM

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

Returns

 ptrImg Pointer to an image structure containing the image. If there is an error NIL is

returned.

Description

iGet() and iPut() are the two main functions of Light Lib Images.

iGet(LLI_SCREEN) reads image data on a screen. The data read is always in the form of a rectangle.

Examples

// This example shows how to read an image from a window.

ptrImg= iGet(dwAppLliHnd,
LLI_SCREEN,
LLI_SCREEN_WINDOW_HANDLE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM
dwUserParam)

iPut() Disk DLL Functions

Purpose

Save or send an image to disk. Open and write to an image file.

Syntax

iPut(dwLLImage AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
LLI_DISK,
dwFormat AS DWORD,
siOffsetX AS SHORTINT,
siOffsetY AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD ,

dwUserParam AS DWORD) -> nil

Arguments

dwLLImage A reference to an image structure containing the image. This must be the result
of iGet() or iCopy()

siX1, siY1, siX2, siY2 These values represent the coordinates of the image to be saved on disk. They
are NOT optional. You can use the predefined value LLI_FULL_SIZE to work on
the entire image. Note that these are the coordinates of the image to be saved.
These coordinates should not be used when working on a portion of the image.
To offset the position of the image on the destination disk file,you must use
siOffsetX and siOffsetY.

dwFormat The image or document file type. The following are predefined values

LLI_DISK_BMP BMP file format
LLI_DISK_GIF GIF file format
LLI_DISK_JPG JPG file format
LLI_DISK_PCX PCX file format
LLI_DISK_TIF TIF file format

siOffsetX, siOffsetY Represent the coordinates of a starting point offset in the disk file. They are NOT
optional. The values 0,0 represent no offset.

These are the coordinates of the disk file and not those of the image. These
coordinates are generally used to offset the image in the disk file. To save only a
portion of the image use the siX1, siY1, siX2, siY2.

dwParam1 Pointer to the image's complete file name.

dwParam2 Compression Type.

Note: that the compression used must be compatible with the format. See
Editions/Versions for the Light Lib Images Compression Chart. One of the
following values are valid for dwParam3

LLI_DISK_COMPRESS_NIL
LLI_DISK_COMPRESS_AUTO
LLI_DISK_COMPRESS_CCITT1D
LLI_DISK_COMPRESS_CCITTG3
LLI_DISK_COMPRESS_CCITTG4
LLI_DISK_COMPRESS_LZW
LLI_DISK_COMPRESS_RLE

dwParam3-dwParam5 Not used. Substitute each with LLI_VOID_PARAM

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

Returns

NIL

Description

iPut() is one of the two main Light Lib Images functions, along with iGet(). iPut() lets you write image data
to Disk. The data written is always in the form of a rectangle.

Example

This example shows how to save a compressed TIF image to the disk:

iPut(ptrImg, // Image pointer
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_DISK, // Disk Device
LLI_DISK_TIF, // Type of compression to use
0,
0,

"MyImage.TIF", // Name of the file
LLI_DISK_COMPRESS_RLE,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM

dwUserParam)

iPut() Memory DLL Functions

Purpose

Create an image in memory.

Syntax

iPut(dwLLImage AS DWORD,
siX1 AS SHORTINT,
siY1 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
LLI_MEMORY,
dwFormat AS DWORD,
siOffsetX AS SHORTINT,
siOffsetY AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD ,
dwUserParam AS DWORD) -> nil

Arguments

dwLLImage A reference to an image structure containing the image. This must be the result
of iGet() or iCopy()

siX1, siY1, siX2, siY2 These values represent the coordinates of the image to be saved on disk. They
are NOT optional. You can use the predefined value LLI_FULL_SIZE to work on
the entire image. Note that these are the coordinates of the image to be saved.
These coordinates should not be used when working on a portion of the image.
To offset the position of the image on the destination disk file, you must use
siOffsetX and siOffsetY.

dwFormat

siOffsetX, siOffsetY Represent the coordinates of a starting point offset in memory. They are NOT
optional. The values 0,0 represent no offset.

These are the coordinates of the image and not those of the image. These
coordinates are generally used to offset the image in memory. To use only a
portion of the image use the siX1, siY1, siX2,siY2.

dwParam1

dwParam2 Compression Type.

dwParam3-dwParam5 Not used. Substitute each with LLI_VOID_PARAM

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

Returns

NIL

Description

iPut() is one of the two main Light Lib Images functions, along with iGet(). iPut() lets you put image data to
memory. The data written is always in the form of a rectangle.

iPut() Printer DLL Functions

Purpose

Send an image or portion of an image to a printer.

Syntax

iPut(dwLLImage AS DWORD,
siX1 AS SHORTINT,
siY2 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
LLI_PRINTER,
dwFormat AS DWORD,
siOffsetX AS SHORTINT,
siOffsetY AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD
dwUserParam AS DWORD) -> nil

Arguments

dwLLImage A reference to an image structure containing the image. This must be the result
of iGet() or iCopy().

siX1, siY1, siX2, xiY2 Coordinates of the image to be sent to the printer. They are NOT optional. You
can use the predefined value LLI_FULL_SIZE to send the entire image. These
are the coordinates of the image, not of the device. These coordinates are used
when working on a portion of the image. To specify an offset on the printer use
siOffsetX and siOffsetY.

dwFormat

siOffsetX, siOffsetY The coordinates of the projection point on the printer. They are NOT optional. The
values 0,0 indicate no offset.

These are the coordinates of the device and not those of the image. These
coordinates are generally used to shift or offset the image on the printer. To send
only a portion of the image use siX1, siY1, siX2, siY2

dwParam1 Printer port to be use in printing the image.

LLI_PRINTER_LPT1
LLI_PRINTER_LPT2

dwParam2 siDensity
LLI_DPI_75
LLI_DPI_100
LLI_DPI_150
LLI_DPI_300
LLI_DPI_600
LLI_DPI_1200

dwParam3 siEjection
LLI_PRINTER_EJECT
LLI_PRINTER_NO_EJECT

dwParam4 siPageFormat
LLI_PRINTER_PAGE_EXECUTIVE
LLI_PRINTER_PAGE_LETTER
LLI_PRINTER_PAGE_NOTE
LLI_PRINTER_PAGE_LEGAL
LLI_PRINTER_PAGE_A3
LLI_PRINTER_PAGE_A4
LLI_PRINTER_PAGE_A5
LLI_PRINTER_PAGE_A6
LLI_PRINTER_PAGE_B4

dwParam5 LLI_VOID_PARAM

The image density is stored in the image structure member LLI_IMG_DPI. If an
images was created by scanning, then the density is known. When the image is
read in from disk, the density depends on the method used at the time of saving.
When Light Lib Images cannot determine the density of an image, 300 DPI is
used.

siDensity is very important for preserving document quality. For example, if you
scan a document at 150 Dpi and don't use the parameter LLI_DPI_150 to tell the
printer to go into 150 DPI mode, it will remain in its current mode (probably 300
DPI) and your printed image will represent only the upper left quarter of the page,
instead of the whole page.

siEjection Eject page after image printing.

In the most common case (PCL4), ejecting a page involves sending a CHR(12)
to the printer. In the POSTSCRIPT language you need to issue a ShowPage
message to the printer.

siPageFormat Paper format in printer.Accepts the following parameters :

Light Lib Images uses an origin located at the top-left of the device. In Postscript
language origin is located at the bottom-left. When you specify the printer paper
format, you allow Light Lib Images to print transparently whenever you want to
use a PCL or a PostScript device.

dwUserParam This parameter is passed to your Idle callback function. It should be a pointer to
any kind of structure.

Returns

NIL

Description

iPut() is one of the two main Light Lib Images functions, along with iGet(). iPut() lets you send an image to
a printer.

Example

// This example shows how to send an image to a printer.

iPut(ptrImg,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_PRINTER,
LLI_PRINTER_PCL4_BW,
0,
0,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM
dwUserParam)

iPut() Screen DLL Functions

Purpose

Display an image on the screen.

Syntax

iPut(dwLLImage AS DWORD,
 siX1 AS SHORTINT,

siY2 AS SHORTINT,
siX2 AS SHORTINT,
siY2 AS SHORTINT,
LLI_SCREEN,
dwFormat AS DWORD,
siOffsetX AS SHORTINT,
siOffsetY AS SHORTINT,
dwParam1 AS DWORD,
dwParam2 AS DWORD,
dwParam3 AS DWORD,
dwParam4 AS DWORD,
dwParam5 AS DWORD,
dwUserPararm AS DWORD) -> nil

Arguments

dwLLImage A reference to a structure containing the image. This must be the result of iGet()
or iCopy().

siX1, siY1, siX2, siY2 Coordinates of the image to be displayed. They are NOT optional. You can use
the predefined value LLI_FULL_SIZE to work on the entire image. These are the
coordinates of the image to display, not of the screen. These coordinates are
usually used when working on a portion of the image. To shift or offset the
position of the image on the screen, use siOffsetX and siOffsetY.

dwFormat The following are valid pre-defined values

LLI_SCREEN_WINDOW_HANDLE Window handle
LLI_SCREEN_DEVICE_CONTEXT Device Context

siOffsetX, siOffsetY The coordinates of the projection point on the screen. They are NOT optional.
The values 0,0 represent no offset. These are the coordinates on the screen and
not those of the image. These coordinates are generally used to move or offset
the image on the screen. To use only a portion of the image use siX1, siY1, siX2,
siY2

dwParam1 Depending on dwFormat, this can be one of the following:

wFormat dwParam1
LLI_SCREEN_WINDOW_HANDLE Window handle
LLI_SCREEN_DEVICE_CONTEXT Device Context handle

dwParam2-dwParam5 Not used. Substitute each with LLI_VOID_PARAM

dwUserParamThis parameter is passed to your Idle callback function. It should be a pointer to any kind of
structure.

Returns

NIL

Description

iPut() is one of the two main Light Lib Images functions, along with iGet() .

Notes

Light Lib Images has no problem displaying a black and white image in 16 or 256 color mode since colors
0 and 1 are used to display black and white pixels respectively.

Another problem arises when you attempt to display simultaneously a 256 color image with many shades
of yellow and a 256 color image with many shades of green.

If you use LLI_PALETTE_EXCLUSIVE, Light Lib Images will use 256 yellow levels to display the yellow
picture. This guarantees a very good display. But if you display the green image with the same
LLI_PALETTE_EXCLUSIVE parameters, the palette, which is the same for the entire screen, will change
to be optimized for the green image and the yellow image already being displayed will be altered.

The solution is to use LLI_PALETTE_SHARED parameters. In this case, Light Lib Images will use a 256
color linear palette, and all images displayed at the same time on the screen will share the same linear
palette. You will not get quite as good a display as when the yellow or green image is displayed by itself,
but the result will be realistic.

In summary, to display one image at a time, use LLI_PALETTE_EXCLUSIVE for the best possible result.
This is the most common case. To display images simultaneously, use LLI_PALETTE_SHARED.

Example

// This example shows how to display an image on screen.

iPut(ptrImg, // Image pointer
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_FULL_SIZE,
LLI_SCREEN, // Device
LLI_SCREEN_WINDOW_HANDLE, // Type of device
0,
0,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
LLI_VOID_PARAM,
dwUserParam)

Who is DFL? With corporate offices in Toronto, Paris and a research and development center in the
south of France, DFL is fast becoming a leading developer of advanced add-on products for Windows
and DOS. We are committed to providing the very best tools for serious software development. Let DFL's
Light Lib family of products help you develop better applications.

Thank you for your support,
The DFL Team.

Light Lib Library User License

This document is a contract between you (the licensee) and DFL.

DFL supplies the software and grants a license for its use. You are totally responsible for choosing to use
the software for the desired purpose, as well as for installing and using it, and for the results obtained.

DFL grants no rights for the software other than those explicitly stipulated in this agreement, and reserves
all rights not explicitly granted to the licensee.

License

DFL grants to the licensee a non-exclusive and non-transferable right to use the software for an unlimited
duration. The licensee may make ONE copy of the software in readable form on a computer or other
support for backup purposes.

You have the right to load the software into RAM and use it on a single computer, to install it on the hard
disk of the computer, to produce executable files (.EXE) containing the Light Lib software.

You are not required to pay royalties to DFL on the sale of any applications using a Light Lib product. If
you expect to sell or distribute more than 500 copies of a commercial product which uses one or more
Light Lib products, it is required that you inform DFL and that you grant DFL permission to publicize the
fact that your product uses Light Lib technology.

Forbidden

The following are forbidden: sharing of the software on a network: each programmer that uses Light Lib
software in part or in whole,must possess his or her own registered license, distribution of the software,
decompilation of supplied files, disassembly of supplied files, rewriting and any form of reverse
engineering of the software, and any other action or activity involving the software that is not explicitly
authorized.

Term

The license shall remain in force until it is cancelled. The licensee may cancel it at any time by destroying
the software and all copies. It is also cancelled without notification if the licensee violates any terms or
conditions of the present agreement. The licensee agrees to destroy the software and all copies if the
agreement is cancelled.

Limited warranty

The software is furnished as is, with no warranty of any sort, explicit or implicit, including, but not
restricted to, implicit warranties as to its fitness or sale for any particular use. Any risks stemming fromthe
quality and performance of the program are entirely bourne by the licensee. If there is any defect in the
program, the licensee (and not DFL or any intermediary) will assume any expenses for help, repair, or
correction.

DFL does not guarantee that the functions included in the programs correspond to the needs of the
licensee or that the program will function without interruptions or errors.

Nevertheless, DFL warrants that the diskettes on which the program is supplied are without defects in
material and packaging for a period of ninety (90) days, to be counted from the date of delivery to the
licensee as indicated on the bill of sale.

The only responsibility of DFL and the only compensation due to the licensee are:

1) Replacement of any diskette not in conformity with the limited warranty of DFL and which has been
returned to DFL or an intermediary authorized by DFL, with a copy of the licensee's receipt, or,

2) If DFL or an authorized intermediary is unable to supply a diskette free of material or packaging defects
the licensee may cancel this agreement by returning the software, and the licensee will be reimbursed.

In no case will DFL be responsible to the licensee for damages of any kind, including loss of profits or
savings or direct or indirect loss resulting from use of or inability to use the program, even if DFL or an
authorized intermediary of DFL was informed of the possibility of such damages, or of any claim forany
third party.

General considerations

You certify that you have read and understood the present agreement, and that you agree to be bound by
its terms and conditions. You also recognize that it constitutes the sole and exclusive basis for our
contract, replacing any earlier proposal or contract, verbal or written, and any other communication
between us relating to the object of the present agreement.

Registered trademarks

All trademarks are the property of their registered owners.

Technical Support

The three primary means of technical support are via Compuserve, FAX and on our BBS. If it is an
emergency, you can call or fax us.

North America

DFL Software Inc. Voice (416) 789-2223
1712 Avenue Road Fax (416) 789-0204
Box 54616 BBS (416) 784-9712
Toronto, ON, M5M 4N5 Compuserve 74723,3321
CANADA Internet 74723.3321@compuserve.com

Europe

DFL Europe Voice (33 1) 46 05 20 66
39-41, rue de la Saussière Fax (33 1) 46 04 10 39
Boulogne BBS (33 1) 46 05 26 88
FRANCE Compuserve 100067,652

Internet 100067.652@compuserve.com

 products by DFL

All Light Lib products have been designed and developed to be implemented easily and execute quickly .

Windows Light Lib Business

Light Lib Images
Light Lib Multimedia

DOS Light Lib Business
Light Lib Images
Light Lib Graphics

Light Lib Business is a revolutionary graphing library. It provides the unprecedented power to present
users with "live" graphs. Your users will now be able to dynamically scroll and interact with graph data as
if they were scrolling text data. The days of static graphs are over!

Light Lib Images is the most comprehensive image and document managing library available. Scanning,
loading, saving, printing images or documents has never been easier.

Light Lib Multimedia is the easiest-to-use multimedia library for Windows. Adding the ability to play or
record sound and display video, will bring your applications to new heights.

Light Lib Graphics for CA-Clipper is the first Replaceable Terminal Driver (RTD) for CA-Clipper. It will
immediately transforms your text mode applications into graphic mode.

All Light Lib products for DOS are upward compatible with their Windows counterpart. Each product
comes with complete help files and source code to the extensive support functions and classes.

All Light Lib products for CA-Clipper are fully compatible with Real and Protected mode linkers
(Exospace, Blinker and Causeway) and each product is fully integrated with CA-Clippper's VMM system.

Light Lib Objects Functions

DLL Functions
oAccess()
oAssign()
oNew()
oDel()

Constants
Constants

Light Lib Objects (LLO)

Light Lib Objects is not another Light Lib product. LLO manages memory allocation and the proper
creation and deletion of all objects within the Light Lib DLLs themselves. Every Light Lib product for
Windows relies on this support DLL. Please review the specific language implementation carefully
because the usage of LLO differs slightly from language to language.

LLO provides object oriented technology to languages that do not support object oriented programming
and provides enhanced features to languages that support OOP. In addition to standard OOP features
such as inheritance, polymorphism, and encapsulation, LLO implements advanced OOP concepts such
as inheriting from an owner class which is not the immediate parent, dynamic class creation, BLOB
aggregation and much more. The following is an example:

ABSTRACT Class - GRAPH Class

ABSTRACT Class - COLUMN Class

There is no relationship between the GRAPH Class and the COLUMN Class. However, if a method or
property is not available in an instance of the COLUMN Class, LLO will not use the ABSTRACT parent
class definition, which is how OOP systems work today. Instead, LLO is able to use the class Owner's
definition which could, for example, be a GRAPH.

How Do I? CA-Visual Objects

Register and unregister an application

You need to call dwLightLibAppRegister() at the start of your program. This allows the Light Lib DLLs to
be properly initialized. If this registration is not executed, you will receive errors.

At the end of execution, you will need to unregister your application with the Light Lib DLLs by calling
dwLightLibAppUnRegister().

Light Lib Objects Constants

Abstract
Application
Class
Error

Class Constants

LLO_CLASS_ABSTRACT Abstract Class (Hidden)
LLO_CLASS_APPLICATION Application Class
LLO_CLASS_CONTEXT Context Class (Hidden)
LLO_CLASS_ERROR Error Class

Abstract Constants

LLO_ABSTRACT_APPLICATION
LLO_ABSTRACT_CARGO
LLO_ABSTRACT_CARGO_COUNT
LLO_ABSTRACT_CLASS_ID
LLO_ABSTRACT_CLASS_NAME
LLO_ABSTRACT_CLASS_VERSION
LLO_ABSTRACT_ERROR
LLO_ABSTRACT_LIBRARY_ID
LLO_ABSTRACT_LIBRARY_NAME
LLO_ABSTRACT_LIBRARY_VERSION
LLO_ABSTRACT_OWNER

Application Constants

LLO_APPLICATION_CARGO_COUNT_DEFAULT
LLO_APPLICATION_CONTEXT
LLO_APPLICATION_HANDLE
LLO_APPLICATION_NAME

Error Constants

Error Class
LLO_ERROR_ACTION
LLO_ERROR_OBJECT
LLO_ERROR_MESSAGE Error message
LLO_ERROR_NUMBER
LLO_ERROR_PARAM Extended depending on Error Type
LLO_ERROR_PROPERTY Property define#
LLO_ERROR_PROPERTY_NAME Property name

LLO_ERROR_NUMBER
LLO_ERROR_CARGO_OUT_OF_LIMIT
LLO_ERROR_INVALID_CLASS_DEFINE
LLO_ERROR_INVALID_OWNER_TYPE
LLO_ERROR_INVALID_PARAMETERS
LLO_ERROR_INVALID_ACCESS_NEW
LLO_ERROR_INVALID_ACCESS_DEL
LLO_ERROR_INVALID_ACCESS_ACCESS
LLO_ERROR_INVALID_ACCESS_ASSIGN
LLO_ERROR_MEMORY_ALLOCATION
LLO_ERROR_NO_ERROR
LLO_ERROR_OBJECT_ACCESS_DENIED
LLO_ERROR_OBJECT_ASSIGN_DENIED
LLO_ERROR_READONLY_PROPERTY
LLO_ERROR_UNDEFINED_PROPERTY

LLO_ERROR_ACTION
LLO_ACTION_ACCESS
LLO_ACTION_ASSIGN
LLO_ACTION_DEL
LLO_ACTION_NEW

User Defined Constants

LLI_UDF_ABORT User Defined Function Abort return value
LLI_UDF_CONT User Defined Function Continue return value
LLI_UDF_ERROR Error append during a Light Lib function execution
LLI_UDF_EXIT Exit phase for a Light Lib function execution
LLI_UDF_IDLE Idle phase for a Light Lib function execution
LLI_UDF_INIT Init phase for a Light Lib function execution

Overview

Light Lib Objects

oAccess() DLL Functions

Purpose

Access an object's instance variable. See also Light Lib Objects

Syntax

oAccess(dwLLObject AS DWORD,
dwProperty AS DWORD,
dwExtraParam AS DWORD) ---> dwData

Arguments

dwLLObject A Light Lib object.

dwProperty A property belonging to this Light Lib object.

dwExtraParam Used to access the LLI_IMAGE_CARGO value. For example, if
LLI_IMAGE_CARGO is a structure, dwExtraParam would represent the byte
offset into the structure.

Returns

dwData The value of the requested object member

Description

dwExtraParam must be cast to DWORD. This allows the Light Lib DLL to pass a POINTER, SHORTINT,
LONGINT etc.

Examples

// This returns the name of the class to which the object belongs.
oAccess(dwMyObject, LLO_ABSTRACT_CLASS_NAME, 0)

// This returns the value of the second cargo
// instance variable for this object.
 oAccess(dwMyObject, LLO_ABSTRACT_CARGO, 2)

oAssign() DLL Functions

Purpose

Assign any value to a defined variable of an object.See also Light Lib Objects

Syntax

oAssign(dwLLObject AS DWORD,
dwProperty AS DWORD,
dwValue AS DWORD,
dwExtraParam AS DWORD) ---> liError

Arguments

dwLLObject A Light Lib object

dwProperty The predefined value to change. You can only change or assign to the symbols
noted as Assignable. You are not able to modify symbols that are Read Only
symbols.

dwValue The value to be assigned.

dwExtraParam Used to access the LLI_IMAGE_CARGO value. For example, if
LLI_IMAGE_CARGO is a structure, dwExtraParam would represent a byte offset
into the structure.

Returns

liError An error code.

Description

The dwExtraParam and dwValue must be cast to DWORD.This allows the DLL to pass a POINTER,
SHORINT, LONGINT etc.

Examples

// This sets the cargo size for this object to 4 DWORD.
oAssign(dwMyObject, LLO_ABSTRACT_CARGO_SIZE, 4)

//This sets the second cargo instance variable to dwMyValue.
oAssign(dwMyObject, LLO_ABSTRACT_CARGO, dwMyValue, 2)

oNew() DLL Functions

Purpose

Used to create a new Application Object. See also Light Lib Objects

Syntax

oNew(dwLLClass AS DWORD,
dwLLObject AS DWORD,
siSizeOfCargo AS SHORTINT,
dwValue AS DWORD
dwExtraParam AS DWORD) ---> ptrAppHnd

Arguments

dwLLClass Represents the class of the object to be created.

dwLLObject Represents the object to be created. If the class to which the object belongs is an
application, the dwLLObject doesn't need to be defined (pass zero).

siSizeOfCargo The size or number of DWORD parameters in an object's cargo.

dwValue This is an optional value containing extra information. For example, when you
create a new Column object inside a Graph object, dwValue dictates where the
column should be inserted. If dwValue is 0, the new column becomes the last
column. If dwValue is an existing Column number, the new Column is inserted
before the passed number.

dwExtraParam An optional parameter.

Returns

dwAppHnd A pointer to a Light Lib Objects application handle.

Description

This allows you to register a Light Lib application with the Light Lib Objects DLL. This registration allows
the Light Lib DLL to be used simultaneously by several applications in a multitasking operating system
and to automate memory garbage collection. You must ensure that your applications always terminate
with oDel().

 When you create an application that uses aLight Lib DLL, you need to register that application with the
Light Lib Objects DLL. This needs to be done at the very start of your application by calling oNew() and by
passing the proper arguments.

Once registered, Light Lib Objects, automatically keeps track of all objects created within the registered
application. This guarantees that all objects are properly connected to the Light Lib DLL.

When terminating an application, you need to unregister it from the Light Lib Images DLL with oDel(). This
frees all memory allocated to objects in the application, even if the objects have not been explicitly
erased. It is, however, always better to erase images from memory when they are no longer needed using
oDel().

This oNew() and oDel() technique needs to be implemented to ensure that Light Lib Objects can properly
manage all memory and processes when being called simultaneously from multiple applications. This is

very important in a multitasking operating system.

oDel() DLL Functions

Purpose

Delete any Light Lib object. This frees all memory allocated to objects in a registered Light Lib application.
See also Light Lib Objects

Syntax

oDel(dwLLObject AS DWORD) ---> dwAppHnd

Arguments

dwLLObject A DWORD representing any Light Lib object.

Returns

dwAppHnd An empty pointer to a Light Lib Images application handle.

Description

You must ensure that your Light Lib applications always terminate with oDel().

Be aware, that deleting a Light Lib object will also delete all of its child objects (if any) as well. As an
example, deleting the Application object in turn deletes all objects created by that application from
memory. It is highly recommended to delete the registered Application object by calling oDel() prior to
exiting any Light Lib application.

This oNew() and oDel() technique (registering and unregistering) must be implemented to ensure that
Light Lib Objects can properly manage the Light Lib DLLs when being called simultaneously from multiple
applications.This is very important in a multitasking operating system.

dwLightLibApp() CA-Visual Objects

Purpose

Get the current Light Lib Application. See also Light Lib Objects

Syntax

dwLightLibApp() ---> dwLightLibRegisteredApp

Arguments

None.

Returns

dwLightLibRegisteredApp The registered application.

dwLightLibAppRegister() CA-Visual Objects

Purpose

Register this instance of application into the LLO.DLL This must be done only once in an application's
execution, and prior to any calls to the Light Lib library you are using. See also Light Lib Objects

Syntax

dwLightLibAppRegister(oApp AS OBJECT,
oWindow AS OBJECT) ---> dwLightLibRegisteredApp

Arguments

oApp Application to register.

oWindow Owner window.

Returns

dwLightLibRegisteredApp The value of the registered application.

Description

This function is used to register your Light Lib application with Light Lib Objects. If this registration
process is not done, your application will not work properly.

dwLightLibAppUnRegister() CA-Visual Objects

Purpose

Unregister a Light Lib application from the Light Lib Objects DLL. See also Light Lib Objects

Syntax

dwLightLibAppUnRegister() ---> dwLightLibRegisteredApp

Arguments

None

Returns

dwLightLibRegisteredApp Unregister an application.

Out of Memory

If you are experiencing memory problems in applications using Light Lib DLLs, there is a good chance
that you are keeping unnecessary references to objects such as images or graphs in memory. When your
application no longer needs an object, you should formally remove or delete it from memory by calling
oDel() with the proper parameters.

DLL Crashes

This error could occur when multiple applications that use Light Lib DLLs are running simultaneously. In
order to prevent conflicts between them, you must ensure that each application is registered with Light Lib
Objects.

This involves making a call to oNew() with the proper parameters at the beginning of your program. Also,
remember to make a call to oDel() just before your application terminates.

Unable to Load a DLL at Runtime

Make sure that the proper Light Lib DLL is available in your WINDOWS\SYSTEM directory. At installation
time, Light Lib DLLs are installed to this directory. If they are not present when your application runs, the
applications will cause a LoadError().

